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Nonequilibrium three-dimensional (3-D) turbulent boundary layers are studied using direct 
numerical simulation (DNS). Time-developing flows are used to investigate the physics of 
spatial-developing ones. We find that application of a spanwise shear leads to the reduc- 
tion of both the turbulent kinetic energy and drag, with the most dramatic reduction of the 
latter occurring when the shear is applied between y+= 5 and 15. When the three-dimen- 
sionality is produced by transverse skewing, the resulting alteration of the relationship 
between the Reynolds stresses is associated in large part with the effect of the pressure 
gradient upon the amplification or attenuation of the turbulent kinetic energy. 
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Introduction 

Flows over swept-wing aircraft, within turbomachines, and over 
hulls of marine vehicles all share a common feature: their 
velocities change not only magnitude but also direction with 
distance from the surface. Thus, they can all be classified as 
three-dimensional (3-D) boundary layers (3DBL), the subject of 
thc present study. Here our attention is limited to the nonequi- 
librium case, in which the 3DBL is created by an abrupt change 
of the mean flow to which the turbulence has not yet adjusted. 
This choice is motivated by its relevance to many technically 
important flows (such as the three cited above), and by the fact 
that the physics of nonequilibrium 3DBLs is not well understood. 
For example, when an initially two-dimensional (2-D) equilib- 
rium boundary layer is suddenly subjected to a spanwise shearing 
force by the impulsive motion of the surface, the resulting 
nonequilibrium flow can experience a decrease of turbulent ki- 
netic energy (see below); because the addition of a mean strain 
typically causes the turbulence to become more energetic, this 
behavior is somewhat paradoxical. On the other hand, when the 
mean streamwise vorticity appears, not because of a moving wall, 
but by skewing of spanwise vorticity with a transverse strain (such 
as that produced by a curved duct) that deflects the entire layer, 
the turbulent kinetic energy has been observed to both increase 
(Schwarz and Bradshaw 1994) and decrease (Bradshaw and Pon- 
tikos 1985), presumably depending upon the nature of the 
streamwise pressure gradient. Moreover, regardless of whether 
the three-dimensionality is due to surface shear or transverse 
straining (i.e., for both the "shear-driven" and "pressure-driven" 
versions), the "structure" of the Reynolds stresses is usually 
altered, because the ratio of the turbulent shear stress magnitude 
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to the turbulent kinetic energy decreases. This implies that 
turbulence in nonequilibrium 3DBLs is "less efficient" at extract- 
ing energy from the mean. 

These observations illustrate the difficulty associated with 
correctly modeling 3DBLs. Another problem, related to the 
"structural" one mentioned above, is that as the turbulence 
reacts to the imposed crossflow, the Reynolds stresses do not 
instantaneously adjust to changes in the mean shear. Therefore, 
models based on an isotropic eddy-viscosity, or, indeed, any 
concept developed for 2-D equilibrium boundary layers, cannot, 
in general, be assumed to be valid for this flow. It is hoped that 
this study, in which we perform numerical experiments on 
"canonical" 3DBLs in an attempt to isolate various effects of 
three-dimensionality, will remove some of these modeling uncer- 
tainties by improving our understanding of the physics of 
nonequilibrium 3DBLs. 

Approach 

Three flow configurations are considered, with the mean three- 
dimensionality created by shear for the first two, and by trans- 
verse strain for the third. All three assume a plane channel 
geometry and are studied using direct numerical simulation 
(DNS); because all relevant scales of motion are resolved, no 
turbulence or subgrid-scale model is needed. The shear-driven 
cases (denoted here by an SD prefix) are the result of impulsive 
motion of the lower channel wall, either by suddenly imposing a 
constant spanwise velocity w+ upon fully developed 2-D Poiseuille 
flow or by suddenly stopping the wall after the turbulence has 
adjusted to the wall motion. The runs subjected to transverse 
strain (indicated by prefix TS) utilize a constant uniform irrota- 
tional mean deformation d U / d x = - d W / d z  in the stream- 
wise-spanwise (x-z) plane. This deformation represents either a 
streamwise expansion or contraction, and thus corresponds to 
either a favorable or adverse streamwise pressure gradient in a 
boundary layer. (The actual streamwise pressure gradient is 
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turned off during the straining.) Therefore, it produces, for a 
flow with nonzero mean spanwise velocity ~, a skewed 3-D 
boundary layer that allows, for example, investigation of the 
"inviscid skewing" mechanism (Bradshaw 1987). (Throughout 
this paper, the terms streamwise and spanwise are used respec- 
tively to indicate the x- and z-directions, and and u- and w-com- 
ponents of velocity, even when the x-axis does not correspond to 
the actual downstream direction of the mean flow; the y-coordi- 
nate denotes the wall-normal direction, and v, the wall-normal 
velocity.) Whereas previous DNS studies have assumed both the 
strain and turbulence were homogeneous (Rogallo 1981), here 
we apply the uniform strain to turbulence between two no-slip 
surfaces. For this we deform both the flow and the (elastic) 
channel walls. Consequently, the near-wall turbulence for the 
present and actual skew-induced 3-D boundary layers will not 
always correspond. Nevertheless, because the outer flow behav- 
ior is of primary interest for this type of 3DBL, the transversely 
strained results are expected to be useful, especially for differen- 
tiating between physics of the shear-driven and pressure-driven 
cases. 

The results to follow have been obtained using the spectral 
channel-flow code of Kim et al. (1987), after it was modified to 
compute the cases described above. All variables are nondimen- 

Table 1 Case parameters 

Case w s u s d U/d x I C 

SD1 - 8 . 5  0 0 2D* 
SD2 0 0 0 col lateral t 
SD3 0 +8 .5  0 2D* 
TS 1 - 8.5 0 - 100 col lateral t 
TS2 - 8 . 5  0 + 1 0 0  col lateral t 

* K i m  et al. (1987); tCase SD1 at t =  1.73 

sionalized by the channel half-width 5", and (in order to high- 
light changes in time) the constant wall-shear velocity from the 
2-D Poiseuille flow initial condition. Because of the time-depen- 
dence of the results, mean quantities (denoted by an overbar) are 
obtained by averaging over planes parallel to the walls, and for 
Case SD1 also over three independent simulations. A summary 
of case parameters is given in Table 1. In addition to those listed, 
a series of runs using a time-independent spanwise shear are also 
discussed (see Table 2 below). Three sets of numerical parame- 
ters are used: for Cases SD1, SD2, TS1, and TS2, the streamwise 
and spanwise domain size L* and L* are 4rr~* and 8~r8"/3, 

Notation 

a l  

dUJdxj 
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c*~,c*~ 

n x ,  Fly, n z 

q2 
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bt, U ,W 

U~W 

h-r-d,, b-W, 

U s , W  s 

(u,)ic 

x ,  y ,  z 

Yw 
y+ 

8 • 

Reynolds stress structure parameter, (fi'T '2 + 
-b-rw2 )l /2 /q2 

constant uniform rate of irrotational strain n 
height below which constant spanwise shear is 
applied 0 
streamwise and spanwise dimensions of computa- 
tion domain, respectively 
number of equivalent grid points in the streamwise, 
wall-normal, and spanwise directions, respectively 
twice the turbulent kinetic energy, ~ X 
Reynolds number, (u* )icS* /v* 
magnitude of strain rate, [dU//dx/I v* 
nondimensional time, t*(u*)ic/8* (; 
oscillation period of spanwise pressure gradient or 
spanwise wall motion (¥x, Yz)w 
nondimensional streamwise, wall-normal, and span- 
wise velocity components, respectively, (u*,v*, to i 
w*)/(u*)ic 
mean streamwise and spanwise velocities, respec- Indices 
tively 
streamwise and spanwise Reynolds shear stresses, Q* 
respectively Q+ 
constant streamwise and spanwise velocities of ~9 
lower channel wall, respectively 
mean surface friction velocity of initial fully devel- Q, 
oped 2-D Poiseuille flow field Q¢ 
nondimensional streamwise, wall-normal, and span- Qw or Qs 
wise coordinates, respectively, (x*, y*, z*)/8* Oic 
distance from lower wall, (~* + y* )/8* 
nondimensional distance from the wall, y* u*/v* 

Greek 

local skewing angle, arctan(St) 
angle between the collateral flow and local skewing 
directions 

half-width of channel 
rate of dissipation of turbulent kinetic energy 
Stokes's second problem similarity variable, 
y+(~r)l/Z/(T+ )1/2 
Stokes's first problem similarity variable, y*/  
2(v* t*)1/2 
angular difference in orientation of skewed mean 
vorticity between cases with and without initial 
component of mean vorticity in pure skewing 
direction, as predicted by generalized Squire- 
Winter-Hawthorne relationship 
angle between mean shear and Reynolds stress, 
arctan[( OV~ / O y ) / (  O~ / Oy )] - a r c t a n ( b ~ / h - ~ )  
kinematic viscosity 
eddy-viscosity ratio, [b-r~/(O~/Oy)]/[-ffrT/(OF~ 
Oy)] 
mean streamwise and spanwise shear, respectively, 
at y* = + 8 (averaged over both walls) 
vorticity, to*/[(u* )ic/5* ] 

dimensional quantity 
quantity nondimensionalized by u* and v* 
average over (x, z)-planes (and where noted, over 
independent simulations) 
fluctuation component, Q - ~9 
variable measure at channel centerline 
value of Q at lower wall, y* = - 8" 
value from initial fully developed 2-D Poiseuille 
flow field 
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respectively, while the number of streamwise (n x) wall-normal 
(ny), and spanwise (n=) grid points is (nx, ny, n~) = (256,129, 256); 
Case SD3 uses ( L * , L * ) = ( 4 ~ * , 4 , n ~ * / 3 )  and (nx,ny, n z) = 
(128,129,128), while (L*, L*) = (41r8", 4"rr$*/3 and (nx, ny, n z) 
= (32,65,32) for the constant spanwise-shear simulations. The 
results presented below verify that with these parameters all 
essential scales of motion are fully resolved (see, for example, 
Figures 5, 6, 7, and 12, and compare diagnostics discussed in Kim 
et al.). 

Results: shear-driven cases 

Spanwise moving wal l  (w s --/= (9) 

Three-dimensional boundary layers free of adverse pressure gra- 
dient effects can be created by introducing mean streamwise 
vorticity at the surface. We begin our examination of this so-called 
shear-driven case with Run SD1, for which an impulsive spanwise 
motion is applied to the lower wall of a stationary 2-D plane 
channel flow--hence, the '2-D' in the "IC" column in Table 1. 
The fully developed initial field is as described in Kim et al. 
(1987), with Reynolds number based on surface friction velocity 
and channel half-width Re~ = 180. The boundary layer that de- 
velops above the moving wall is analogous to that found in 
rotating cylinder experiments (Furuya et al. 1966; Lohmann 
1976; Driver and Hebbar 1991) in the region where the longitudi- 
nal flow along the cylinder first encounters the rotating section. 
It is also similar to that found by Moin et al. (1990) and Sendstad 
and Moin (1992), who used DNS to study the transient response 
of a 2-D channel flow to a suddenly imposed spanwise pressure 
gradient. This similarity is no surprise, given that the effect of the 
spanwise pressure gradient is equivalent (because of the stream- 
wise homogeneity of the plane channel) to subjecting the walls to 
a uniform spanwise acceleration. Many of the results found here 
are qualitatively similar to those found earlier by Sendstad and 
Moin. There are fundamental differences, however, between the 
accelerating and constant-velocity wall flows: the equilibrium 
state of the former is a reoriented Poiseuille flow, while here the 
moving wall leads first to an equilibrium "collateral" boundary 
layer (a flow for which the (new) direction of the mean velocity 
remains constant in y), and eventually--once the spanwise shear 
diffuses across the channel centerline to the stationary wall-- to 
an equilibrium skewed 3DBL Poiseuille/Couette configuration 
(because the direction of the mean velocity varies approximately 
linearly in y). (Had we set both walls in motion in the same 
direction, the final state would have been two equilibrium collat- 
eral boundary layers.) In this paper, we consider times shorter 
than those required for the spanwise mean shear to diffuse 
across the centerline; therefore, only the nonequilibrium-to-col- 
lateral transition. Another difference between the present and 
Sendstad and Moin's Study is that, because they were interested 
only in the nonequilibrium state, their domain size and numeri- 
cal resolution were insufficient to capture their reoriented 2-D 
flow accurately, with its associated smaller streamwise scales. 
Here, however, because of the central role played by the collat- 
eral boundary layer, it is necessary to use numerical parameters 
sufficient to correctly represent both the transient and long-time 
behaviors. 

The imposed spanwise wall velocity for Case SD1, w s = -8 .5 ,  
is about half the initial mean streamwise velocity at the center- 
line ~c [and, therefore the collateral flow angle will be about 
26 ° = arctan(0.5)]. To avoid a discontinuity in y, an early-time 
Stokes solution for the impulsively started fiat plate is used to 
specify the initial distribution of ~(y). At this Reynolds number, 
the F-profile imposed at t = 0 corresponds to the Stokes solution 
at t = 0.0045. The resulting variation in time of the mean span- 
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Figure 1 Mean (a) spanwise veloci ty and (b) hodograph for 
Case SDI :  - - ,  ensemble average over three independent 
real izations for t ime sequence t =  0.075, 0.150, 0.225, 0.300, 
0.375, and 0.750; . . . . .  , laminar Stokes solut ion at t = 0 . 7 5 ;  
. . . .  , plane average over single real ization at t =  1.73; t ime 
normalized by channel hal f -width and surface fr ict ion veloc- 
ity f rom init ial f ield 

wise velocity profile is shown in Figure la. The solid curves 
represent an average over planes parallel to the walls and over 
three independent realizations beginning from three different 
initial fields. The dotted curve illustrates the Stokes solution at 
the time corresponding to the last ensemble-averaged result 
(t = 0.750). Even at this last time, the laminar and turbulent 
profiles are not drastically different; at t = 0.375 the agreement 
between the Stokes solution (not shown), and the Case SD1 
profile is significantly be t te r - -a  consequence of the slow devel- 
opment of the spanwise Reynolds stress b'r-~. The dashed curve 
in Figure la shows the spanwise velocity at t = 1.73. As the polar 
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velocity plot in Figure lb  indicates (because the direction of the 
mean velocity is very nearly constant with distance from the 
surface) the flow at this time is to a good approximation collat- 
eral. The t = 1.73 field is used as initial conditions for some of 
the cases described below (see Table 1). 

Adding a spanwise component to the shear at the wall causes 
a reduction in the streamwise component, as Figure 2a shows. 
The streamwise wall shear drops to a minimum of about 90% of 
its initial value before the added shear leads to its eventual 
growth. (Simulations other than those presented here indicate 
that imposing a larger shear produces a larger wall-shear reduc- 
tion than found for Case SD1.) The drop in turbulent kinetic 
energy (1/2)q 2= (1/2)u/~., associated with the wall-shear de- 
crease can be seen in Figure 3a. The effect spreads away from 
the wall in time, as more and more of the layer experiences a 
drop in q2 as time passes. A trace of the history of the near-wall 
peak of q2 is presented in Figure 2b. Its behavior is similar to 
that of the wall shear, in that an initial reduction precedes 
growth to greater than initial values. The maximum qZ begins to 
grow sooner than the wall shear does, however. 

Figure 3b shows how the relationship between the compo- 
nents of the Reynolds stress tensor is altered by the spanwise 

shear: the structure parameter a 1 is significantly reduced. This 
reduction, which is a central feature of nonequilibrium 3DBLs, 
implies that for the shear-driven case the decrease in magnitude 
of the lateral shear stress is even more rapid than that of the 
turbulent kinetic energy. Note that the shear-induced reduction 
of both a~ and q2 propagates away from the wall in time. The 
finite lag between the angles of the mean shear and shear stress 
(Figure 4a) is such that, while they eventually coincide as the 
collateral state is approached, initially the two angles differ by 
almost 40 ° . The shear always "leads" the stress so that 
arctan[(O~/Oy)/(O~/Oy)]- arctan(b-r~/u--r-~ remains positive. 
A more straightforward demonstration of the difficulty associ- 
ated with using a scaler eddy-viscosity to model this flow is 
presented in Figure 4b, which illustrates the evolution of the 
ratio of the spanwise to streamwise eddy-viscosity; only after q2 
begins to grow (cf. Figures 2b and 4b) does this ratio begin to 
approach one. 

The spatial structure of the turbulence is also modified by the 
moving wall. We find that the smallest scales of motion adjust 
most rapidly to changes in mean flow conditions. This observa- 
tion, which was previously made by Sendstad and Moin (1992) in 
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their 3DBL DNS study, is supported by the two-dimensional 
energy spectra shown in Figure 5. These spectra also indicate the 
numerical fidelity of the DNS results, over the entire 2-D-to-col- 
lateral flow range. (The same conclusion is also reached when 
the one-dimensional (I-D) spectra (not shown here) are exam- 
ined.) At this y-location (which in wall units initially corresponds 
to y+=  15), the high-level contours at low wavenumbers are 
"turned" more slowly than are their low-level high-wave number 
counterparts. The enstrophy profiles in Figure 6a also imply that 
at this location (y = -0 .92)  the smaller scales initially become 
more energetic. Part of the previously noted drop in the peak q2 
- - i n  addition to being the result of reduced production caused by 
lower mean shear and turbulent shear stress (Figures 2a and 3b) 
--is ,  therefore, due to an increase in the rate of turbulent kinetic 
energy dissipation e. Near the wall, however, the vorticity fluctu- 
ations weaken in time, indicating that here the energy at smaller 
scales (and, hence, the dissipation rate) is diminished. The time- 
dependent influence of:the spanwise shear on the location of the 
maximum enstrophy can be accounted for to some degree by 
using the similarity variable of the laminar Stokes solution, 
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"q =y*/2(v*t*) 1/2 (using the * superscript to denote dimen- 
sional variables, with v* the kinematic viscosity, and y* = ~* + 
y*), to rescale the wall-normal coordinate. When this is done 
(Figure 6b) the enstrophy maximum is found for the times 
considered to remain near "q = 1. 

More instantaneous structural information is available in 
Figure 7, which shows contours of wall-normal vorticity in x-z 
planes just above the moving wall from one of the Case SD1 
realizations, revealing the effect of the imposed spanwise shear 
upon the streaks. They are first weakened and "torn" into 
smaller structures; later they become stronger and more elon- 
gated as they realign in the collateral flow direction. 

A complication in the analysis of Case SD1 is the time-depen- 
dent nature of the imposed mean spanwise shear• Although some 
of the time-dependence can be removed by using laminar theory, 
as in Figure 6b, the fact that O~/Oy varies in both y and t 
makes it difficult to determine the mechanisms responsible for, 
for example, the turbulent drag reduction, because different 
near-wall structures exist at different y+ locations. We have, 
therefore, performed a series of runs using "synthetic" time-in- 
dependent mean spanwise velocities: a uniform spanwise shear 
d~/dy  of equal magnitude is applied over various regions, and 
held constant in time. Because we are primarily interested in the 
initial response of the turbulence to the applied shear, we do not 
allow the imposed initial ~ profile to change in time under the 
influence of viscosity, and the turbulence; d~/dy  is held fixed to 
make comparisons more straightforward than they would be if 
evolved naturally. Because our attention is upon near-wall behav- 
ior, it is possible to specify a lower-Reynolds number for these 
runs than was used to obtain the Case SD1 results described 
above. Instead of 180, here the initial Re T is 112. This greatly 
reduces the computational expense, because at Re T = 112 only 
(n x, n?, n z) = (32, 65, 32) collocation points are required, which 
allows us to explore a wider parameter range for a given amount 
of CPU time than would be possible at higher-Reynolds num- 
bers. (We have also used the "minimal channel" geometry 
(Jim6nez and Moin 1991) to investigate the effect of constant 
spanwise shear upon 2-D channel flow. However, because in the 
present study we choose to impose d~/dy  at locations fairly far 
away from the walls, those results are not presented here, in 
order to avoid uncertainties that might be present in minimal- 
channel statistics from far-wall regions.) 

Three series of constant-shear simulations were made; these 
are denoted by a CSD prefix and summarized in Table 2. Each 
series uses a distinct value of constant d~/dy  (either 50, 200, or 
800% of the initial mean streamwise wall shear), and contains 
eight individual runs, which are defined by the height h above 
the wall over which d~/dy  is imposed. The region of uniform 
shear extends from the surface to h ~, measured in wall-units of 
the initial 2-D field, which varies from 5 to 40 in increments of 5. 
To prevent a discontinuity in the ~ profile, above 1 - lyl = h the 
spanwise shear drops to zero as a Gaussian that falls to 1% of its 
nominal value over five initial wall units. The shear is applied 
over both sides of the channel, so that both walls are set in 
motion in the same direction at a constant spanwisc velocity 
proportional to h d~,/dy. 

A comparison of mean streamwise surface drag histories is 
shown in Figure 8; a reduction with time is found in all instances, 
with the drop proportional to the magnitude of the applied shear 
(cf. Figure 8a, b, and c). The weakest effect occurs when the 
shear is imposed between Yic+ = 0 and 5 (yi + is the wall-normal 
coordinate in wall-units of the initial field), with a cumulative 
drag reduction as the depth of the sheared region increases. 
Note, however, that once the shear extends beyond y i  + = 25 for 
the weakest shear (Series CSD1; Figure 8a), and y ~ = 15 for the 
largest d~/dy  (Series CSD3; Figure 8c), further increases in h + 
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do not lead to a significant change in the rate of drag decrease. 
Moreover, the greatest " jump" in the drag reduction occurs 
when h ÷ moves from yi + = 10 to 15 for the weak shear runs 
(CSD1), and from h + = 5  to 10 for Series CSD3, for which 
d~/dy  is largest.  This indicates that  the "op t imal  
shearing"-- that  which most deeply disrupts the 2-D equilibrium 
state-- is  application of d~/dy to the region between y+ = 5 and 
15, with a tendency for the "critical region" to shift towards the 
lower limit as the spanwise shear increases. 

In the version of this paper presented at TSF-10, the upper 
limit of the range of maximum influence was found to be 

y+ = 10, not y+ = 15, as it is here. This is because there instead of 
considering histories of mean surface shear stress, turbulent 
kinetic energy histories were analyzed. It was subsequently dis- 
covered that the development of the streamwise surface drag is a 
better measure of 3DBL behavior, because it is less sensitive 
than q2 to the magnitude of the applied spanwise shear; at very 
large shear rates, the surface drag and kinetic energy histories 
show opposite trends, with the former decreasing in time, while 
the latter experiences rapid growth. (Another, less significant, 
reason for the difference is that the q2-histories previously 
presented were not taken from the minimal-channel runs de- 
scribed earlier, as claimed, but from preliminary course-grid 
simulations; however, because results from the two runs were 
quite similar, the influence of this error was slight.) 

These constant-shear findings are perhaps related to the 
effect of an oscillating spanwise mean pressure gradient (or 
equivalently spanwise oscillating walls) upon turbulent boundary 
layers. Numerical (Jung et al. 1992) and experimental (Laadhari 
et al. 1994) studies have shown that maximum suppression of 
turbulence occurs when the spanwise oscillation period in wall 
units is about T += 100. Because of the applicability of the 
laminar theory for the mean spanwise velocity for the oscillating 
wall flow (Jung et al.), a connection can be made between the 
T + = 100 optimum, and the above observation that shear below 
y+=  15 is most effective: at T += 100 and y+=  15, the similarity 
variable ~ for the laminar solution, which can be written as 

=y+('rr)l/2/(T+) 1/2, gives 4 / ( ' I " i " )  1 / 2  = 1.5, which is close to the 
effective depth of the boundary layer created by the oscillating 
wall, as shown in Figure 9. 

Finally, we comment on the significance of the present results 
for theories regarding the structural mechanisms responsible for 
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Tab le  2 Cons tan t  s p a n w i s e - s h e a r  runs  

Ser ies  
dy / ~ OY )w, ic 

CSD1 0.5 
CSD2 2.0  
CSD3 8.0  

- . , ,  

Figure 7 Con tou rs  of  w a l l - n o r m a l  vo r t i c i t y  on (x ,  z ) -p lanes  
at y ~ =  1 + y =  0 . 0 0 3  (y~c+= 0.5)  at  (a) t = O ,  (b) 0 .075 ,  (c) 0 .150 ,  
(d) 0 .225 ,  and (3) 0 . 3 0 0  fo r  one  rea l i za t ion  of  Case SD1 : . 
t% > O; c o n t o u r  i n t e r v a l =  1; f l o w  at  c e n t e r l i n e  f r o m  lef t  to 
r ight ;  s p a n w i s e  w a l l  m o t i o n  f r o m  top to  bo t tom;  p lanes  
rep resen t  fu l l  f l o w  d o m a i n  

the drag reduction in shear-driven 3DBLs. One suggestion is that 
the reduction is due to the spanwise shear directly modifying the 
near-wall quasi-streamwise vortices, thereby weakening the en- 
ergy production cycle (Eaton 1995). Although the present results 
are not inconsistent with this theory, because on average, the 
quasi-streamwise vortices are found near y + =  20 (which is just 

above the "optimal shearing" region of 5 < y + <  15), the greatest 
influence of shear-driven three-dimensionality appears to be due 
to modification of the "bottoms of" the vortices, the "tops of" 
the streaks, or of the in terac t ion  between the two. We also note 
that applying a spanwise shear in the region below y+=  5 pro- 
duces a smaller drag reduction than when d ~ / d y  is imposed 
between y+=  15 and 25 (Figure 8), which suggests that the 
weakening and "shredding" of the streaky structure observed 
L,ery near the wall at Yi~+ = 0.5 (Figure 7) is more a symptom of 
the tree-dimensionality than an important part of the dynamics. 

Stat ionary wa l l  (Ws=O) 

The other type of shear-driven 3DBL considered here also has 
an analog in the rotating cylinder experiments: by suddenly 
stopping the spanwise-moving wall in the channel after a collat- 
eral state has developed, an effect comparable to passing from 
the rotating to stationary section in the experiments is produced. 
The initial condition for this stopped-wall run, Case SD2, is 
obtained from Case SDI at t = 1.73. As can be seen from the 
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Figure 8 His to ry  of  m e a n  s t r e a m w i s e  wa l l  shear  s t ress,  
no rma l i zed  by in i t ia l  va lue ,  fo r  cons tan t  s p a n w i s e - s h e a r  runs,  
Ser ies  (a) CSD1,  (b) CSD2 and (c) CSD3:  . . . .  , h + = 5 ;  - - -  
- - ,  h + = l O ;  . . . . .  , h + = 1 5 ;  . . . .  , h + = 2 0 ; - - ,  h + = 2 5 ;  
. . . .  , h + - - 3 0 ;  . . . . .  , h + = 3 5 ;  , h + - - 4 0 ;  re- 
su l ts  at  each  t i m e  ave raged  over  both  w a l l s  
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Figure 9 Stokes osci l lat ing f lat-plate solut ion: t ime se- 
quence over half period in 30 ° increments 

t = 1.73 results in the Case SD1 hodograph (Figure lb) and the 
kinetic energy spectra (Figure 5d), the layer above the moving 
wall is effectively 2-D at this time. Thus, when the coordinate 
system coincides with the angle of the mean shear at the surface 
(26 ° ), the resulting mean "spanwise" velocity has no y-variation 
(Figure 10). Consequently, the only difference between subject- 
ing a 2-D boundary layer to an impulsive spanwise wall velocity 
and suddenly stopping the wall beneath a collateral boundary 
layer is that in the latter case the imposed wall shear has both a 
downstream and cross-stream component, the relative strengths 
of which depend upon the collateral flow angle. Because the 
applied downstream shear and the existing collateral surface 
shear are aligned and of opposite sign, the Case SD2 energy-drop 
(Figure 11) is due to both the cross-flow effect discussed above 
and also a straightforward reduction in the usual 2-D - u - 7 0 ~ /  
Oy production. However, although both the downstream and 
cross-stream components act to reduce the turbulent energy, 
their influence upon the flow structure is fundamentally differ- 
ent. Results from Case SD3, a run for which the lower channel 
wall is moved solely in the downstream direction, show, for 

12" 

%, 

t ~  

6 ................................................................................. 

0.0 0.1 0.2 0.3 0.4 

t 

Figure 11 History of max imum q2 for Case SD2 

example, that the vorticity fluctuations are everywhere dimin- 
ished by the streamwise shear (Figure 12), while the cross-flow 
(see Figure 6a) leads to an increase at some locations and a 
decrease at others. 

R e s u l t s :  t r a n s v e r s e l y  s t r a i n e d  c a s e s  

We conclude with some preliminary results from the strained 
channel simulations, Cases TS1 and TS2. The strain rate S = 
IdU/dxl used for these runs is such that at the channel centerline 
the nondimensional strain-rate parameter Sq 2/e = 160; this value 
of S is 48% of the mean shear at the surface, [(0~/Oy) 2 + 
(c~/Oy)~.) 1/2, of the initial collateral flow (Case TS1 at t = 1.73), 
and therefore represents a very rapid deformation. Note the 
opposite signs of dU/dx for the two simulations. If the collateral 
initial state were exactly aligned at 45 ° to the x-axis, the applied 
d U / d x = - d W / d z  strain would produce a pure irrotational 
skewing of the flow (i.e., in downstream coordinates the only 
nonzero terms of the strain rate would be the off-diagonal 
components dU/dz = dW/dx, as if a pressure gradient were 
acting at a right angle to the mean streamlines), and the only 
difference between Cases TS1 and TS2 would be that one would 
turn the flow (in time) to the right, and the other to the left, 
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Figure 10 Mean veloci ty profi les in coordinate system 
al igned wi th  direct ion of mean shear angle at the surface, 
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Figure 12 Vort ici ty f luctuat ion profiles, normal ized by init ial 
wal l  value, for Case SD3; symbols as in Figure 3 
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respectively. However, because the collateral flow angle is 26 ° , 
the opposite signs of dU/dx correspond to a mean deceleration 
of the boundary layer in the downstream direction for Case TS1 
and an acceleration for Case TS2. 

Mean velocity hodographs are shown in Figure 13. The veloc- 
ity components are measured with respect to the coordinate 
system defined by the turning angle of the irrotational skewing: 
the downstream direction is at 45 ° + c~ clockwise from the x-axis, 
where the effective turning angle a = arctan(-tdU/dx). This 
choice allows us to check the validity of a generalized Squire-  
Winter-Hawthorne relationship for the mean velocity (Bradshaw 
1987), derived by assuming that in the outer layer the evolution 
of the mean vorticity is simply given by skewing of vortex lines in 
the x-z plane (and taking into account that initially the mean 
vorticity has a component parallel to the pure-skewing direction 
of 45 ° to the x-axis). Thus, one can obtain that for the coordi- 
nate system used in Figure 13, the mean velocity should satisfy 
~, = - t an (0  + 2a)(~ s - (~)c),  where tan 0 = tan 13 cos2a / (1  + 
tan 13 sin2c0, and 13 = 45 - 26 = 19 ° is the difference between 
the collateral flow and pure skewing directions. Measured clock- 
wise from the horizontal axis, the predicted angles for Cases TS1 
and TS2 are 43 and - 8  ° , respectively, both of which are fairly 
close to the values observed in Figure 13. The behavior of q2 
(Figure 14a), and therefore, a 1 (Figure 14b) depends upon 
whether the effect of the mean strain represents that of an 
adverse or favorable pressure gradient. The kinetic energy in- 
creases, and structure pa rame te r  decreases,  for the 
decelerating-strain flow, Case TS1; for Case TS2 the opposite 
occurs. 

Conclusions 

A DNS study of nonequilibrium 3DBLs indicates that for the 
shear-driven case, the greatest decrease in mean turbulent drag 
is obtained when a spanwise shear is applied in the region 
between 5 < y + <  15; it is postulated that this result is related to 
the observation that maximum turbulence suppression occurs for 
boundary layers above oscillating surfaces when the spanwise- 
oscillation period is about T ÷= 100. The qualitatively different 
influence of suddenly applied spanwise and streamwise wall 
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Figure 14 Profiles of (a) q2 and (b) structure parameter for 
Cases TS1 and TS2; symbols as in Figure 13 

shears on, for example, enstrophy profiles implies that nonequi- 
librium boundary layers produced by an abrupt mean-flow change 
are sensitive to the type--and not just the suddenness--of that 
change. Investigation of the pressure-driven flow using strained- 
channel simulations has begun to yield insight into differences 
between the two main versions of 3DBLs. In the future, we plan 
to continue this effort by considering less-rapid strain rates than 
that imposed here and utilize initial fields aligned at various 
orientations in order to isolate adverse pressure gradient and 
pure-skewing effects. An attempt will also be made to determine 
the Reynolds number dependence of our conclusions regarding 
the shear-driven 3DBL by performing large-eddy simulations of 
the moving-wall flow. 
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